↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval(TRUE, x, y, z) → eval(-@z(x, 1@z), -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval(&&(>@z(x, z), >@z(y, z)), x, y, z)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval(TRUE, x, y, z) → eval(-@z(x, 1@z), -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval(&&(>@z(x, z), >@z(y, z)), x, y, z)
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], z[0]), >@z(y[0], z[0])) →* TRUE))
(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(z[1] →* z[0])∧(-@z(x[1], 1@z) →* x[0]))
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((z[0] →* z[1])∧(x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], z[0]), >@z(y[0], z[0])) →* TRUE))
(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(z[1] →* z[0])∧(-@z(x[1], 1@z) →* x[0]))
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
(1) (EVAL(x[0], y[0], z[0])≥NonInfC∧EVAL(x[0], y[0], z[0])≥COND_EVAL(&&(>@z(x[0], z[0]), >@z(y[0], z[0])), x[0], y[0], z[0])∧(UIncreasing(COND_EVAL(&&(>@z(x[0], z[0]), >@z(y[0], z[0])), x[0], y[0], z[0])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(>@z(x[0], z[0]), >@z(y[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(>@z(x[0], z[0]), >@z(y[0], z[0])), x[0], y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(x[0], z[0]), >@z(y[0], z[0])), x[0], y[0], z[0])), ≥))
(5) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(x[0], z[0]), >@z(y[0], z[0])), x[0], y[0], z[0])), ≥)∧0 = 0)
(6) (&&(>@z(x[0], z[0]), >@z(y[0], z[0]))=TRUE∧z[1]=z[0]1∧y[0]=y[1]∧x[0]=x[1]∧z[0]=z[1]∧-@z(x[1], 1@z)=x[0]1∧-@z(y[1], 1@z)=y[0]1 ⇒ COND_EVAL(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1], z[1])≥EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥))
(7) (>@z(x[0], z[0])=TRUE∧>@z(y[0], z[0])=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), -@z(y[0], 1@z), z[0])∧(UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥))
(8) (x[0] + -1 + (-1)z[0] ≥ 0∧-1 + y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥)∧-1 + (-1)Bound + (-1)z[0] + y[0] ≥ 0∧0 ≥ 0)
(9) (x[0] + -1 + (-1)z[0] ≥ 0∧-1 + y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥)∧-1 + (-1)Bound + (-1)z[0] + y[0] ≥ 0∧0 ≥ 0)
(10) (x[0] + -1 + (-1)z[0] ≥ 0∧-1 + y[0] + (-1)z[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥)∧-1 + (-1)Bound + (-1)z[0] + y[0] ≥ 0∧0 ≥ 0)
(11) (x[0] + -1 + (-1)z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥)∧(-1)Bound + y[0] ≥ 0∧0 ≥ 0)
(12) (z[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥)∧(-1)Bound + y[0] ≥ 0∧0 ≥ 0)
(13) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥)∧(-1)Bound + y[0] ≥ 0∧0 ≥ 0)
(14) (z[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])), ≥)∧(-1)Bound + y[0] ≥ 0∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x3
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, x[1], y[1], z[1]) → EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])
COND_EVAL(TRUE, x[1], y[1], z[1]) → EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z), z[1])
EVAL(x[0], y[0], z[0]) → COND_EVAL(&&(>@z(x[0], z[0]), >@z(y[0], z[0])), x[0], y[0], z[0])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)